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Abstract. Species distribution models (SDMs) have been used extensively in the field of land-
scape ecology and conservation biology since its origin in the late 1980s. But there is still a void
for a universal modeling approach for SDMs. With recent advancements in satellite data and
machine learning algorithms, the prediction of species occurrence is more accurate and realistic.
Presently, four machine learning and regression-based algorithms, namely, generalized linear
model, maximum entropy, boosted regression tree, and random forest (RF) are used to model
the geographical distribution of Rhododendron arboreum, which is economically and medici-
nally important species found in the fragile ecosystem of Himalayas. To establish complex rela-
tion between the occurrence data and regional climatic and land use parameters, several satellite
products, namely, MODIS, Sentinel-5p, GPM, ECOSTRESS, and shuttle radar topography mis-
sion (SRTM), are acquired and used as predictor variables to the different SDM algorithms. The
performance evaluation has been conducted using the area under curve (AUC), which showed
the best result for Maxent (AUC = 0.871) and poor result was observed for RF (AUC = 0.755)
among all. The overall prediction confirmed the distribution of Rhododendron arboreum in the
mid to high altitudes of central and southern parts of the Garhwal Division. We provide crucial
evidence that combining multisatellite products using machine learning algorithms can provide a
much better understanding of species distribution that can eventually help the researchers and
policymakers to take the necessary step toward its conservation. © 2022 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.16.042402]
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1 Introduction

Since the start of the century, humans started to recognize the importance of regional ecosystem
in explaining the distribution of flora and fauna. As a result, the understanding of species-specific
geographical presence has become an important aspect especially considering the global con-
cerns of climate change, altitudinal range shift, species invasions, and depletion of endangered
species.!” Modeling the potential distribution of a plant species is typically achieved by one
(or more) of the several modeling methods. They use exploration of diversity patterns explora-
tion to investigate the distribution depending upon species identity and based on different input
parameters, such as climatic data, land use data, soil data, presence/absence data, climatic con-
dition, and its projection data for the generation of suitability maps. These models are sensitive
to abundance patterns, altitudinal variations,® latitudinal variation ranges, and climate change
scenarios. The technique used to model species geographical distribution is termed as species
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distribution models (SDM), also known as ecological niche modeling, bioclimatic envelop mod-
eling, or bioclimatic modeling. It provided solutions to some of the core issues in ecology, evo-
lution, and its conservation. With the advancement in SDM algorithms, there is still a need to
better understand the nonlinear interactions of species with local parameters as prediction based
on extrapolation was found to be nonrobust, especially with the conventional approaches.*>

In recent years, several studies have been carried out to solve computational problems and
implemented neural network® and machine learning models in the study, which are valuable tools
for modeling many phenomena in ecology, mathematics, medical, economics, physics, and
engineering.>® Some of their significant applications were introduced in the research works
of Jamali et al.,® Radmanesh and Ebadi,” Fouladi et al.,® Rafieipour et al.,” Heydarpour et al.,'”
and Altaher et al.'! Also, the authors in Refs. 6 and 8 given several remarkable studies on the
theory, analysis, and recent historical development of the neural network and computational
studies.

According to the niche theory,'” a species can only be found in a region where the combi-
nation of local bioclimatic gradients allows the species to have positive population growth. This
theory conceptualizes the regional species environment and its occurrence considering the
absence of immigration. While further extending the theory, it can also be realized that the varia-
tion in species traits allows them to inhabit different niches or cohabit in a particular spatial
extent. These interactions are ecologically complex and nonlinear; therefore, the role of machine
learning is crucial in understanding their distributions.'*'* But before the introduction of
machine learning in SDM, several theories and models were proposed by ecologists and
researchers widely used to predict the distribution of plants and animals. BIOCLIM'® and
DOMAIN'® are among the earliest SDMs that received global acceptance due to their less com-
plex algorithm and easy to use interface. For establishing the nonlinear relation between input
parameters, several machine learning iterative algorithms are proposed that give much better
accuracy than the linear models. Boosted regression trees (BRT)!” and random forest (RF)'® are
among the widely accepted iterative models, especially for modeling species distribution.'” On
the other hand, the maximum entropy (Maxent) model®” is based on envelop model, which takes
the presence-only data as its input parameter. Another one is based on the conventional regres-
sion-based learning technique called generalized linear model (GLM),?! which can consider
multiple measurement levels of response values using different link functions. Among the above
mentioned SDM’s, Maxent is widely expected algorithm due to its robust and nonlinear mod-
eling techniques.?” Maxent models are able to satisfy all known variables without any subjective
assumptions, which is not present in earlier SDM models (such as Bioclim/DOMAIN).
Therefore, it is more robust than earlier SDM because of the following inherent merits that
involve improved mathematical modeling, machine learning, and statistical tools with better
predictive accuracy. These SDM models have efficient deterministic algorithms that can be ben-
efit to predict species’ optimal probability distribution at the study sites. They are less sensitive to
the various environmental variables and changes occurring in them. They consider interactions
between environmental variables and minimize overfitting problems.

Major drawback of SDMs are the availability of non-uniform and relatively lesser field obser-
vations as compared to the area of interest, therefore models are generally extrapolated beyond
their sampling sites. These spatial and geographical-extrapolations based on limited species sam-
pling often lead to spurious results. A major limitation of macroecological SDMs is the inability
to predict species identity and thus mainly involved species richness, i.e., emergent ecosystem
properties implemented for exploring macroecological phenomena. Even the probability distri-
bution is not uniform in earlier SDMs, thus the stability is lower than expected. Species dis-
tribution results depend on the spatial resolution chosen for the extent mapping, and also
temporal aspects play a significant role in species. Therefore, models having functioning of spe-
cies ecological distribution at the relevant scale are needed.”® References 24 and 25 suggested
that the unavailability of data or insufficient data-based predictions using extrapolation are limit-
ing to the true species distribution in the region, which was supported by the study conducted by
Ref. 26. Therefore, while using SDM, one has to understand data quality, sufficient data,
predictor variables (hydrometeorology), and reliability of the models for distribution output.
There is some development that happened in past, but there is still a lack of modeling techniques
for understanding the complex relationship between different regional input parameters. As per
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the fundamental assumptions of SDM, the target species is considered to be in equilibrium
with the predictor variables, which is highly criticized in the past and still there is not a
relevant alternative.”” The recent developments in theoretical ecology, remote sensing tech-
niques, and modeling algorithms have now enabled the ecologists to model near real-time
distribution of the species, especially with the data coming at much finer spatial and temporal
resolutions.?®° Also with the introduction of sensors such as Sentinel-5p and ECOSTRESS, it is
now possible to assess the relation of greenhouse gases and evapotranspiration with species
distribution, which was missing in the conventional studies. Earlier, ecologists preferred to use
the data from Worldclim,*! NCEP,*> and ECMWF™ as predictor variables that provide spatially
interpolated atmospheric datasets at 0.1 deg to 2.5 deg of spatial resolution. The coarse reso-
lution data were the major source of uncertainty and error, also they did not allow the model to
predict the distribution of species at the regional scale. Particularly for the topographical con-
ditions of the Himalayas, which varies drastically, it needed fine-scale satellite products.

The Himalayas being home to thousands of economically, medicinally, and rare flora and
fauna is experiencing global climate change.***> In their study, they reported that the overall
warming in the Himalayas is consistently increasing for the past 100 years, and the rate is much
higher than the global average of 0.74°C.*®37 The temporal change in the distribution of species
has been reported by several researchers and their impact on regional ecology.®®*’ One such
species is Rhododendron arboreum, which comes from the Ericaceae family and dominantly
found in the Himalayas, South India, Nepal, and Sri Lanka.*"*? It is an economically and medici-
nally important species and sustains itself in the fragile ecotone of alpine and subalpine regions.
The continuous change in regional climatic conditions is imperative to model the distribution of
species so the biodiversity and conservation of the ecosystem can be maintained.

The main contribution of this work is to uncover the following:

¢ Impact of environmental variables on the distribution of Rhododendron arboreum at the
study site.

¢ Linking variables, such as normalized difference vegetation index (NDVI), enhanced veg-
etation index (EVI), evapotranspiration (ET), fraction of photosynthetically active radia-
tion (fPAR), water vapor, leaf area index (LAI), land surface temperature (LST),
precipitation, ozone, NOx, albedo, aerosol absorbing index (AAI), and digital elevation
model (DEM) for understanding the distribution of species in Himalayan environment.

* Assessment of the variables on geographical distribution of Rhododendron arboreum
through machine learning and entropy models.

Therefore, in purview of the above and considering uniformity in probability and stability of
Maxent, this study is focused on establishing the relation between different bioclimatic and envi-
ronmental parameters to model the distribution of Rhododendron arboreum within the study
area. In Sec. 2, we provide an overview of the study site, specifications of target species, mod-
eling algorithm employed in the study, and performance evaluation metrics. Section 3 explains
the model result and discussion part, in which the species distribution maps along with the dis-
cussion are presented. Section 4 provides some conclusions and gives suggestions for future
research.

2 Materials and Methods

2.1 Study Area

The Himalayas is one of the most complex and diverse ecoregions, and it offers rich biodiversity
and has been home to thousands of floras and fauna. The complex topography allows some of the
rare, medicinal, and economically important species to grow within this region. This study is
conducted within the Garhwal Division of Uttarakhand state where the elevation ranges from
416 to 7801 m above mean sea level. As shown in Fig. 1, this region has several biomes, namely
tropical evergreen and deciduous broadleaf forest, tropical and subtropical coniferous forest,
temperate coniferous forest, temperate savanna, grassland, and shrubland as well as it has a
significant number of glaciers as well. The region falls under subtemperate to temperate climate,
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Fig. 1 Study area map showing the distribution of biomes.

and the hilly terrain with densely forested slopes receives significant rainfall from mid-June till
September with several occasional rain events throughout the year, whereas ~20% of the area is
covered with snow throughout the year. Due to its rich ecology and complex environmental
conditions, it has always attracted the attention of researchers and scientists from around the
world, especially with the recent trend in global warming, this region is showing early impacts
of climate change that makes this region more important.

2.2 Target Species and Occurrence Data

The geographical distribution of Rhododendron arboreum is performed for the study area using
in situ occurrence data and predictor variables. Rhododendron arboreum has a great biological
significance and dominantly found in the Himalayas. The occurrence of this species was reported
between 1200 and 4000 m above mean sea level.* Rhododendron arboreum is a high valued
species both in terms of medicinal and economic importance, also it is reported by ecologists that
it possesses some characteristics of invasive species.*** Medicinally, Rhododendron arboreum
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is anticancerous, antioxidant, antidiabetic hepatoprotective, antimicrobial, diarrhoea, and
antinociceptive.** Whereas a study in Ref. 45 reported that the squash made of Rhododendron
arboreum is used for the treatment of intellectual disabilities. Economically, the species used in
making jams, local brews, squash, and in different juices, also its wood is used as fuel, and the
leaves are used for treating the bedbug bites. With such importance, mapping its distribution is
very crucial for ecosystem conservation and making necessary strategies for its protection.*® The
in situ data collection was conducted within the study area during September 2019 and Match
2021, covering the complex topography of the region. A total of 70 homogeneous patches of
Rhododendron arboreum were identified at different elevations. Among the collected occurrence
data, two-third used for model development and one-third is used for validation purpose. To
mark the occurrence of the species, handheld Garmin GPS is used with a horizontal accuracy
of 95% + 9.3 m.

2.3 Predictor Variables

For establishing complex relationship between the occurrence data and local ecosystem, several
environmental predictor variables are acquired from different satellite sensors. The selection of
predictor variables is performed on the basis of their direct impact on the vegetation. The envi-
ronmental predictor variables include MODIS products, namely, NDVI, EVI, fPAR, and LAIL
The sentinel-5p sensor provides information related to the greenhouse gases with a high spatial
and temporal resolution that makes it very crucial in the regional ecological study considering
climate change. The Sentinel-5p product used as predictors is AAI, water vapor, albedo, ozone
(05), nitrogen dioxide (NO,), carbon monoxide (CO), and sulfur dioxide (SO,).*” Apart from the
climatic parameters provided by Sentinel-5p, LST and (ET) are acquired from ECOSTRESS
sensor.*® Precipitation data are obtained from GPM dataset. Topography plays a vital role in
studying species distribution, especially in the topographically complex regions such as the
Himalayas. Therefore, DEM provided by the SRTM* is used as an input parameter for the cal-
culation of SDM. Also, the regional biome is taken into consideration as forest biomes directly
influence the species distribution.*

2.4 Species Distribution Modeling Algorithms

The regional dynamics and distribution of species, especially their prediction under the influence
of climate change, is a crucial issue for ecological biodiversity and conservation. The concept of
SDM started in early 1980s, but before that, mapping of species distribution is only limited to in
situ sampling. With the availability of satellite-based climatic data, several presence-only based
model is designed and tested in the early 2000s, which includes BIOCLIM and DOMAIN. After
that, several other models were introduced based on establishing the correlation between occur-
rence data and the climatic predictor variables. These models are easy to implement but did not
provide significant accuracy and failed on the regional scale. As the interaction between species
and respective ecological parameters is extremely complex, nonlinear models must establish
their relationship. Therefore, some of the most popular and widely used machine learning algo-
rithms are trained to model the geographical distribution of Rhododendron arboreum within the
study area.

2.4.1 Maxent

Maxent is one of the widely used SDM that works on estimating the probability distribution
through maximum entropy of input parameters. Reference 51 defined that entropy is the measure
of the total number of choices involved in selecting a particular feature. The basic concept of
Maxent was first introduced by Ref. 52, which stated that the best way to ensure the approxi-
mation is by testing the results with known positions, and the distribution must have maximum
entropy, it is also known as the maximum-entropy principle. Maxent owes its success in species
distribution because the entropy reaches a minimal value that is highest to that of a species
among the probability distributions of all the species. This is achieved by predicting the occur-
rence of species through the distribution, which is mostly spread out or tends to have a uniform
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distribution. This, in turn, necessitates having the information of all the environmental variables
of the locations. The Maxent algorithm uses many points taken during ground data sampling that
are referred to as background points, and these background points define the current environ-
mental variables.”® These variables are used as constraints that limit the rule for the predicted
distribution. In general, Maxent considers linear/quadratic/product/threshold/hinge/categorical
features as constraints that define the rule to confine the expected distribution. These features
have different implications for the constraints. This work has used a categorical feature called
“biome,” which is defined as types of regional land use. This constraint specifies the proportion
of predicted occurrences in each category to be as close to the proportion of observed occur-
rences in each category.

In this work, two probability densities are calculated. These densities provide the relative
likelihood of all environmental variables over the range of background points. The algorithm
then calculates the ratio between these probability densities to find the relative ecological suit-
ability for the occurrence of the rhododendron for the given point in the study area. In this man-
ner, the Maxent chooses the distribution that has maximum similarity between the environmental
characteristics of the given climate and the locations where the required species are supposed to
be abundant. This is the raw output of the algorithm, which is logically transformed by con-
sidering the prevalence value. In this work, the value is taken as 0.5, which implies that the
species is present in half of all the possible locations. The limitation of this algorithm lies
in the fact that it provides environmental suitability rather than the predicted probability of
occurrence.*!

The mathematical measure of the uniformity of a conditional distribution 7(x), which is
provided by the conditional entropy, is given as

H(z) ==Y #(x) In Z(x). (1)

xeX

The entropy is bounded from below by zero, the entropy of a model with no uncertainty at all,
and from above by In 7(x), the entropy of the uniform distribution over all possible |7(x)| of x.
This acts as a base for presenting the principle of maximum entropy.

To select a model from a set S allowed probability distribution, choose the model p* € § with
maximum entropy H(7):

p*=arg maXpeSH(ﬁ')' (2)

It can be shown that p* is always well-defined, that is, there is always a unique model p* with
maximum entropy in any constrained set S. The threshold chosen in the current method is the
value for which the sum of sensitivity and specificity is highest, and the probability model
prediction will be transformed to a binary score of the presence or absence of the species.
The required solution is achieved by maximizing the gain function that is a penalized maximum
likelihood function that is given as

M N

1 J
Gain = Y zl)d—log Y Q(x)e =3 |4 fx\[s2[z)]/M. ©)
i—1 =

i=1

where the likelihood of the presence data are the sum of predicted values at presence locations is
given by L3 7(x;)A, the likelihood at all the background locations is the sum of the predicted

values at background locations is given by > ¥ | O(x j)ez(xf )% and overfitting penalty to be used
in regularization is given as

J

2
Sl )

J=1

where f3 is the regularization coefficient, 52|z ;] represents the variance of feature j at presence
locations, and Q(x;) is the prior distribution. A significant characteristic of Maxent is
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regularization that helps in reducing the overfitting of the model. This is achieved by setting
confidence intervals across the constraints and excluding the features that are not significant.
The regularization used is the least absolute shrinkage and selection operator.

2.4.2 Random forest

Random forest algorithm®* is developed using the classification and regression tree approach,
and it has shown significant performances in different application of remote sensing, including
forestry,> ecology,’® classification,”” and climate change.’® Random forest is defined as a col-
lection of weak learners having a tree structured interface with uniformly distributed random
vectors where each tree provides a prediction for the resultant variable. While generating the
group of weak learners based on the bootstrap of the data, the overall calculation converges
on an optimal result avoiding the issues of general parametric, classification, and regression
statistics. Bootstrap of training, independent variables (M) at each node, and retaining the var-
iables that provided the most useful information sum up the significance of RF algorithm for
both regression and classification purposes. To assess the information and purity of the node,
Gini entropy index is used.
The algorithm for the prediction of a new variable can be explained as

1

B
Frr(®) = 5> Tolx). s)
b=1

where .}A‘ff(x) is the bootstrapped RF function for predicting x, T, is the RF tree, and B is the
number of bootstraps.

2.4.3 Boosted regression trees

BRT is one of the most popular machine learning techniques that is widely used for SDM. It is
based on improving the performance of a model by fitting multiple models and combine them for
prediction. Broadly, BRT uses two algorithms, first one is the regression trees based on clas-
sification and regression of input parameters and the second builds the boosting and combines
the collection of multiple models. Tree-based models divide the predictors into small clusters
using a series of rules to identify the region having the most homogeneous response during
prediction. The regression tree fits the mean response from predictors in any specific region.
As per Ref. 59, the best way to fit a decision tree for growing a large tree and then trimming
it by eliminating the weakest links identified through cross-validation. Decision trees are widely
used because they are easy to implement, visualize, and one of the most flexible algorithms,
especially for species distribution modeling.®® At the same time, boosting technique is used for
improving the accuracy of the model based on its background architecture of finding and aver-
aging multiple rules of thumb rather than a single rule.! While other techniques include bagging,
stacking, averaging, and merging the results from multiple models, boosting works as sequential
models based on forward and stagewise procedures. The AdaBoost boosting algorithm is used to
determine species distribution by fitting the predictors using sequential iteration technique.

2.4.4 Generalized linear model

GLM is also termed as an extension of the classical linear regression model, where the
transformation is achieved to get a normal distribution for the dependent variable. In a GLM-
based model, predictor variables are used to calibrate the model, and the link function is selected
based on the statistical distribution of dependent variables. GLM being a parametric function is
not optimized using the least-square method, rather it uses the maximum likelihood method for
model optimization.®”** GLM model has a set of distribution function including binomial,
Poisson, gamma, etc. in which gamma distribution having link function f(x) = p, where p
is the mean value of predictor variables, is used for establishing the relation between the
predictors.
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In GLM, the predictors X;(i = 1,2,...,n) are joined together to get a linear predictor (LP),
which is related to 4 = E(y), where y is the response variable, to the link function f(), which is
represented as

f(E(y)) = LP = +X", (6)

where o is the intercept, X' = X;,X,,...,X, is the vector of p variable, and
B=(B1,Pa,...,PB,) is the regression coefficient.
Therefore, for i’th observation,

() =< +p1Xs + poXip + ... + B X (N

The error rate within the model is resolved using the least square algorithm® during the
model fitting.

2.5 Model Validation

In any regression and classification-based machine learning model, the estimation of model per-
formance and classification accuracy is an important task. Therefore, to evaluate the overall
accuracy of the distribution modeling, AUC parameter evaluation matric is used for all four
machine learning algorithms. Primarily, the data are divided into training and testing sets, in
which one-third data are assigned for the model validation, and rest is allocated for model devel-
opment. AUC is widely used for model validation, especially in binary classification models.
AUC is a threshold-independent evaluation metric that validates the model performance at vari-
ous discrimination thresholds. At each discrimination threshold, the true positive rate (TPR), also
known as the probability of detection or sensitivity and the false positive rate (FPR), also known
as the probability of false alarm, is estimated and plotted against each other. The TPR and FPR
for each point (x, y) are plotted together to get the final AUC curve. It is also explained as

TPR = —— % 100, 8
TP +FN ®
whereas specificity is calculated as
TN
Specificity = ————— x 100,
pecificity = = TP )
FPR = 1 — Specificity, (10)

where TP is the true positive, and FP is the false positive values. Specificity defines the true
negative rate, whereas TPR calculates the percentage of correctly predicted values. The AUC
value varies from O to 1, where the value closer to 1 shows the accurate classification, and the
values close to 0 denote poor classification accuracy.

3 Results and Discussion

The geographical distribution of a particular species is dependent upon the regional climatic,
topographical, and land cover conditions. To build a more relevant SDM, the predictor variable
should directly influence the existence and growth of the species. The occurrence data for the
target species, Rhododendron arboreum, are collected within the Garhwal Division of
Uttarakhand state, where the topography and climatic conditions are complex. To establish a
relationship between species occurrence and its regional climatic condition supporting its exist-
ence and growth, 16 predictor variables are considered input parameters to different machine
learning-based SDMs. The yearly trend is analyzed for each input parameter so the generated
relation can be widely accepted and irrespective of any short-term bias caused by local weather
conditions. The machine learning algorithms used in developing SDMs are Maxent, GLM, RF,
and BDT. The algorithms are intercompared and validated using statistical evaluation matrices.
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3.1 Input Variables

Several satellite-based input variables are acquired for modeling the species distribution. With
better spatial and temporal resolutions, products from the sensors such as MODIS, Sentinel-5p,
GPM, and ECOSTRESS are widely used in analyzing the regional and global ecology. Presently,
MODIS products, namely NDVI, EVI, LAI and fPAR, are used in the SDM algorithms. These
variables indicate the information related to the surface reflectance, productivity, energy transfer
by the vegetation, water cycle processes, and other biophysical and biochemical properties of the
vegetation, and the spatial resolution of these data varies from 250 to 500 m. The products from
ECOSTRESS, namely ET and LST, is responsible for providing the information related to plant
water consumption and regional temperature levels, the thing that makes the ECOSTRESS prod-
ucts more valuable is their spatial resolution, it provides data at 70 m spatial resolution and has
comparatively better temporal revisit. Sentinel-5p being one of the most recent sensors that pro-
vide data of different atmospheric gases, including the greenhouse gases at global with a spatial
resolution of 0.01 arc degree, which is better than other satellite sensors currently active.
Sentinel-5p provides a wide range of atmospheric data, but the data that highly influence
Rhododendron arboreum are taken as model inputs and are, namely, ozone, nitrogen dioxide,
albedo, carbon monoxide, sulfur dioxide, and AAI. Precipitation is one of the most important
parameters for SDM acquired from GPM at a spatial resolution of 0.1 arc degree, whereas DEM
is used to consider the topography. As the Himalayas is made up of different biomes, this study
area has five biomes as listed in Fig. 1, and the biome information is also used as a predictor
variable to the SDM.

All the predictor variables are shown in Fig. 2, which is the yearly average to maintain the
temporal consistency, and all are resampled so they can match each other on the pixel level. The
estimated NDVI and EVI values are varying from —0.08 to 0.84 and —0.11 to 0.48, respectively,
in which it was found that the southern part of the study area is having high vegetation content in
the tropical evergreen and deciduous forest than the northern part where the temperate forests
dominate the biome. NDVI is used to identify the green vegetation, and EVI can enhance the
vegetation signal by reducing the canopy background noises. ET also supported NDVI and EVI
results, as it varies from 3.34 to 37.2 kg/m? where the maximum values are observed around the
boundary of tropical deciduous and tropical and subtropical conifer forest shoeing the latent heat
flux coming from the earth surface. Also, the fPAR and LAI values are highly correlated with ET
and varying from O to 0.87 and O to 5.48, respectively. The LST is varying from 259.16 to
300.89 K, the value of LST is higher in the southern part, and it is gradually decreasing in the
northern direction due to increase in the elevation range, which is in between 416 and 7801 m,
that shows the elevation drop in the region and its impact on LST. Precipitation is also very low in
the northern part, as it almost covered with snow throughout the year, whereas the middle and
southern regions have significant average rainfall in between 0.049 and 0.188 mm/h, higher
values are seen in the Pithoragarh region, where the forest is dominated by tropical evergreen
biome. The sentinel-5p-based parameters are also provided significant information regarding the
regional climate condition throughout the year. Water vapor is one of the major greenhouse gases
found to be higher in the highly forested regions and lower in the higher altitudes. The range of
observed water vapor is between 151.86 and 1933.73 mol/m?. The quantity of water vapor has a
direct impact on plant growth and photosynthesis. The ozone layer is found to be higher in
tropical forests and lesser in the higher altitude showing the thinner atmosphere in the northern
part, it is varying from 0.1207 to 0.1258 mol/m?. The higher nitrogen dioxide value affects the
plant growth, and currently, it is ranging from 4.6e-005 to 6.2e — 005 mol/m? in which the
higher values are found in the southwestern part where the forest density is low. The albedo
and AAI have shown similar results with an observed value between 0.21 to 0.83 and
—1.85 to 0.04, respectively. Albedo and AAI are higher in the higher altitudes and low values
in forest area due to their high absorption by the dense vegetation. Carbon monoxide varies from
0.014 to 0.036 mol/m? with higher values over the forested region, whereas sulfur dioxide
varies between —0.00055 and 0.00061 mol/m?. Both carbon monoxide and sulfur dioxide are
major greenhouse gases and have an impact on plant growth and distribution.

All the input parameters have major significance over the distribution of species. Although
increasing the parameter may improve the accuracy, the model will become more
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Fig. 2 Input variables for SDM.

computationally complex and parametric bias will also increase. Therefore, the predictor var-
iable is limited to 16 in this study so a more robust model is designed. Rather than considering
the satellite data during the sampling period, an overall trend is used to generate the mean value
of each predictor variable. The trend of the predictors holds great importance as it demonstrates
the change in climatic and land use condition throughout the year. The yearly trend of each
variable is shown in Fig. 3. NDVI, EVI, and ET have demonstrated a similar trend, as the values
are minimum in January, which linearly increased until the monsoon and gradually decreased in
the winter. fPAR and LAI have similar trends as the maximum value is observed before and after
the monsoon season when the insolation is on its peak. Precipitation and water vapor also fol-
lowed a similar curve where the value is high in the monsoon period, and LST gradually
increases until the monsoon and then starts decreasing. Atmospheric variables also have different
responses to the local weather, and NO,, albedo, and AAI values are high during monsoon,
whereas Oj is highest during January and gradually decreases the entire year. SO, value is lowest
during May to September and progressively increases in winter.
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3.2 Species Distribution

The distribution of Rhododendron arboreum is predicted using four machine learning and
regression-based algorithms considering 16 climatic and environmental datasets as input param-
eters. The prediction has been made for a spatial resolution of 100 m as shown in Fig. 4. As GLM
is based on a regression-based linear modeling approach, the prediction given by GLM is show-
ing overestimation with the higher probability of Rhododendron arboreum occurrence in the
central region between tropical and subtropical coniferous and temperate conifer forest. The
distribution predicted by Maxent is largely covering the mountains’ tails and dominantly occur-
ring in the central and southern parts of the study area. A similar result is shown by the BRT
algorithm in which tree-based relation is generated within the input parameters. BRT is establish-
ing major presence of Rhododendron arboreum in the southern part of the study area and some
distributed patches on the northern side. On the other hand, RF vastly underestimated the pre-
diction and has only shown higher probability of Rhododendron arboreum occurrences around
the center of the study area and some occurrences on the south side. Overall, it is observed that
GLM is overestimating the species distribution prediction, and RF is underestimating the same.
But Maxent and BRT are showing promising results. The distribution of Rhododendron arbor-
eum is largely found in the central and southern parts of the study area, and a higher probability
can be seen near the tails of high topographic mountains.

3.3 Model Validation

The AUC curve is used as an evaluation metric to validate the prediction made to model the
distribution of Rhododendron arboreum using four different machine learning and regression
algorithms, as shown in Fig. 5. As AUC value varies from O to 1, with the value nearer to 1 is
showing the high probability that the species is present. The maximum AUC value is recorded by
Maxent and is 0.871, which shows that Maxent is the most promising machine learning model to
assess species distribution on regional scale. After that, 0.835 AUC is recorded for GLM, which
is also a considerable value in modeling species distribution, but the overestimation of the
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species in GLM is something that is more concerning. Apart from that, BRT has given an AUC
value of 0.82 and according to its prediction, it has provided more precise values than even
Maxent at some places. An underestimation is observed in RF with an AUC of 0.755, making
it the worst-performing machine learning model among the four. Overall, it is observed that
Maxent is performing well, and BRT has also shown promising results for modeling the dis-
tribution of Rhododendron arboreum.

The previous studies, such as Reiss et al.,%® compared several models, such as MAXENT, RF,
and SVM (support vector machine) for species distribution modeling and revealed that they have
similar predictive performance. When compared with the other model such as BIOCLIM
through their AUC, they found that values are significantly higher than BIOCLIM. In another
study by Tsoar et al.,®’ they confirmed that Mahalanobis distance can even predict better than
BIOCLIM and DOMAIN. In the study by Elith and Graham et al.,® they compered the per-
formance of MAXENT with BIOCLIM and DOMAIN and pointed out that MAXENT gives
a significantly higher predictive performance than the later. In Ref. 69, the authors divided the
SDMs into two categories; at first they included the best performing one with higher stability
such as Mahalanobis distance, RF, MAXENT, and SVM, whereas the second category com-
posed of low stability one with lower performance such as BIOCLIM and DOMAIN. In other
study by Giovanelli et al.,” they also confirmed the better performance of MAXENT as well as
SVM for species distribution modeling and concluded that both SVM and MAXENT can be used.
Overall, the above-mentioned studies indicate the superior predictive accuracy of MAXENT in
SDM and recommended it for further use. The findings also revealed that the varying performance
and stability of SDMs can be linked to changing environmental variables and climatic conditions.
The results of this study are in agreement with the previous studies as mentioned above and hence
can be used for prediction of Rhododendron sp. in the Himalayan region.

3.4 Future Perspective and Challenges

SDMs can predict the distribution of species on a regional scale and if well calibrated then for a
global scale as well. Several models help in getting an insight into species distribution as well as
establish linear and nonlinear interactions between the predictors, but they still lack establishing
ecological theories and predefined assumptions. The confined understanding of species response
to bioclimatic variables and limited statistical approaches bring error to the SDM. But with the
advancement in spatial datasets and statistical algorithms, the prediction accuracy is continu-
ously improving. The availability of satellite images providing bioclimatic, ecological, and eco-
hydrological responses reduced the uncertainty related to the satellite-based biotic interactions.
References 24 and 71 listed several actions to counter uncertainties, including the continuation of
ecological and biological research that focuses on biotic interactions, regular and systematic
collection of species occurrence data, temporal validation of retrieval models, selection of pre-
dictors, and algorithm improvements based on different climatic scenarios.

The integration of bioclimatic and atmospheric variables provides an exciting option for
defining the consequences of global climate change on species distribution, especially for future
scenarios. But, not all SDMs are optimally suited for predicting the species distribution based on
various predictors. The earlier SDMs, namely BIOCLIM and DOMALIN, were based on the pre-
defined hypothesis and did not have the option to integrate atmospheric gases and other satellite
products. These early-stage models also lacked establishing complex nonlinear relation between
the predictors. So, the data-driven models, namely GLM and BRT, are introduced to model the
distribution based on observational data and substantially to integrate ecological hypothesis.
These models are based on the observed realized niche and limited to the in situ observations
and predictor variables. When combined with a certain degree of ecological knowledge, the data-
driven models will act as the process-based approach in which the prediction will be more accu-
rate and equally supported by the ecological hypothesis. Fot iterative models such as Maxent and
RF, when supplied with process-based predictors, the generated prediction will have better accu-
racy, and the nonlinear relation will be more precise.

Despite ongoing improvements in SDM algorithms and the satellite-based predictors, the
prediction is still influenced by the degree of uncertainty based on the biotic behavior of species
and its interactions with changing climate and regional biota. Therefore, it is recommended to
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use a process-based approach in modeling the distribution of species, which allows prediction
beyond the observational data. Machine learning algorithms prove their importance in modeling
process-based prediction, and with regular upgradation in the knowledge of species interaction,
SDMs are continuously improving. However, additional research still needs to focus on the eco-
logical understanding of species, ecological theories, and combining observational data rather
than concentrating only on a data-driven approach. In the last few decades, with the high com-
puting system and database technologies, now big datasets are available to users for deriving
efficient outcomes.’> With the advancement in deep learning, AI and data mining methods have
entered a new age® that can help in analysis of high dimensional datasets with high accuracy,
which now provides an enormous possibility in species distribution mapping also.”

4 Conclusion

In this study, we attempt to establish the relation between species occurrence data and their
respective environmental predictor variables. The yearly tread of each parameter is analyzed
to observe the variations throughout the year and a pixelwise mean value is calculated to be
used in the SDM. Machine learning algorithms, namely Maxent, BRT, RF, and GLM, are imple-
mented to establish the relation between predictor variables. The AUC-based performance evalu-
ation matric is generated, and it is found that Maxent is performing better than others with an
AUC of 0.871, also BRT has shown promising results with AUC = 0.82, but the GLM and RF are
found to be overestimating and underestimating, respectively. The machine learning algorithms
performed significantly well, and remote sensing data proved to be a vital source of information
in ecological studies, which is continuously improving with regular upgradation in satellite data
and algorithms. Although the SDMs are providing better results on regional studies but still lack
in explaining the ecological background, the true meaning of their prediction and boundary con-
ditions is a topic of research for future. To summarize, if SDMs are to be a standard tool, the
background should be supported by good ecological understanding, and they give a new direc-
tion to the future research opportunities in SDM.
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