
# CHAPTER-7 SOIL AND THE SOIL MICROFLORA





### CHAPTER- 7 SOIL AND THE SOIL MICROFLORA

The soil, harbours millions of organisms, releases that flight of imagination which pictures the soil as a sort of Lilliputian Zoo in which some magic hand has eliminated all barriers and set free every grade of minute but a rapacious monster to go roaring after the next lesser grade as its lawful prey.

Directly or indirectly, the wastes of humans and other animals, their bodies, and the tissues of plants are dumped onto or buried in the soil. Somehow they all disappear, transformed into the substances that make up the soil. It is the microbes that make these changes, the conservation of organic matter into simple organic substances, that provide the nutrient material for the plant world. Thus microorganisms play a key role in maintaining life on earth. Soil has been defined as that region on the earth's crust where geology and biology meet. From a functional viewpoint, the soil may be considered as the land surface of the earth, which provides the substratum for the plant, animal and microbial life. The characteristics of the soil environment vary with locality and climate. Soils differ in-depth, physical properties, chemical composition and origin. Fertile soil is inhabited by the root system of higher plants, by many animal forms (e.g. rodents, insects and worms), and by tremendous numbers of microorganisms.

The vast differences in the composition of soils, together with their physical characteristics and the agricultural practices used for the cultivation of plants, resulting in large differences in the microbial population both in total numbers and in kinds.

**Table-26: Soil nutrient analysis report:** 

| Properties                | Components   | Unit          | Result |
|---------------------------|--------------|---------------|--------|
| Mechanical Analysis       | Clay         | %             | 36.10  |
|                           | Silt         | %             | 40.10  |
|                           | Sand         | %             | 23.80  |
| Sand Particle Size        | Coarce       | %             | 0.0    |
|                           | Silt         | %             | 30.0   |
|                           | Clay         | %             | 70.0   |
| Water Holding Capacity    |              | %             | 30.43  |
| Permeability              |              | Cm/hrs.       | 4.640  |
| Specific Density          |              |               | 2.37   |
| TDS                       |              | %             | 0.185  |
| EC (1:5)                  | Mill Mhos/cm | Micro Mhos/cm | 0.600  |
| рН                        |              |               | 7.89   |
| Available Macro Nutrients | N            | Kg/He.        | 280    |

## Green Audit Report 2016-2021



|                | P  | Kg/He. | 75      |
|----------------|----|--------|---------|
|                | K  | Kg/He. | 320     |
| Elements       | Ca | %      | 0.020   |
|                | Mg | %      | 0.015   |
|                | Na | %      | 0.0165  |
|                | K  | %      | 0.0016  |
|                | Cl | %      | 0.068   |
| Microelements  | Fe |        | 5.90ppm |
|                | Zn |        | 4.40ppm |
|                | Mn |        | 8.20ppm |
| Organic Carbon |    | %      | 1.25    |
| Organic Matter |    | %      | 1.50    |

### Table-27: Soil fungi from university campus

| Sl.no | Family          | Species                  |
|-------|-----------------|--------------------------|
| 1.    | Acaulosporaceae | Acaulospora longula      |
|       |                 | Acaulospora denticulata  |
|       |                 | Acaulospora scrobiculata |
| 2.    | Chaetomiaceae   | Chaetomium species       |
|       |                 | Glomus aggregatum        |
|       | Glomeraceae     | Glomus arborense         |
|       |                 | Glomus cerebriforme      |
|       |                 | Glomus etunicatum        |
| ,     |                 | Glomus fasciculatum      |
| 3.    |                 | Glomus hoi               |
|       |                 | Glomus intraradices      |
|       |                 | Glomus citricola         |
|       |                 | Glomus geosporum         |
|       |                 | Glomus mosseae           |
|       |                 | Glomus versiforme        |
| 4.    | Нуросгеасеае    | Trichoderma hazarianum   |
| 5.    | Mucoraceae      | Mucor species Fresen     |
|       | Mucoraccac      | Rhizopus species Ehrenb  |
| 6.    | Nectriaceae     | Fusarium oxysporum       |

# Green Audit Report 2016-2021



|    |                | F. solani                              |
|----|----------------|----------------------------------------|
| 7. | DI.            | Helminthosporium species Durieu & Mont |
|    | Pleosporaceae  | Alternaria brassicicola Schweinitz     |
|    |                | Curvularia lunata Boedijn              |
| 8. | Sparassidaceae | Sparassis crispa                       |
|    |                | Aspergillus niger van Tieghem          |
|    |                | A. parasiticus                         |
|    |                | A.nidulans G Winter                    |
|    |                | A.oryzae Ahlburg E. Cohn               |
|    |                | A.flavus Johann Friedrich Heinrich     |
|    |                | A.fumigatus Fresenius                  |
| 9. | Trichocomaceae | A. versicolor (Vuill.) Tiraboschi      |
|    |                | A.terreus Thom                         |
|    |                | Penicilliumbilaiae Chalab              |
|    |                | P.crustosum Thom                       |
|    |                | P.funiculosum Thom                     |
|    |                | P.chrysogenum Thom                     |
|    |                | P.purpurogenum Stoll                   |



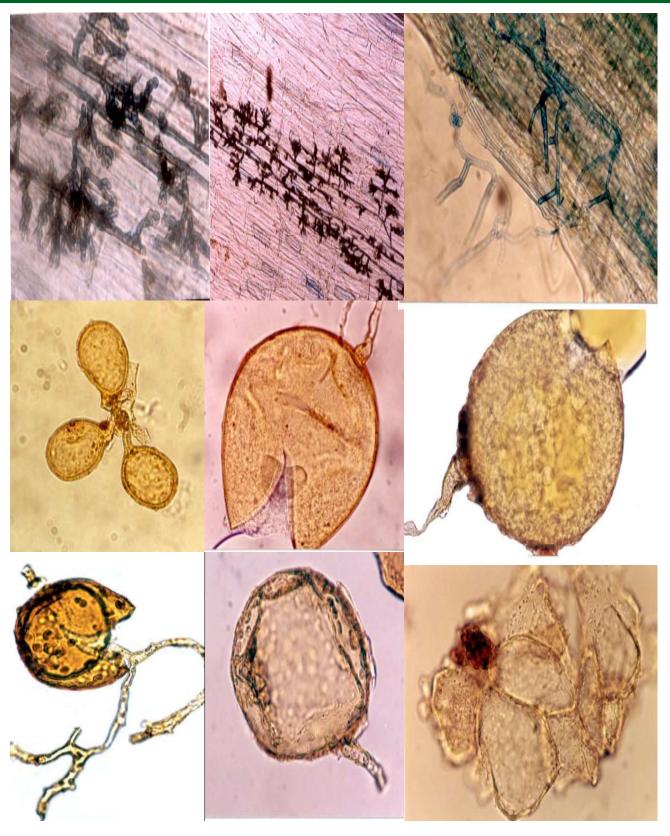



Figure 5 : AM fungi spores.

### Green Audit Report 2016-2021



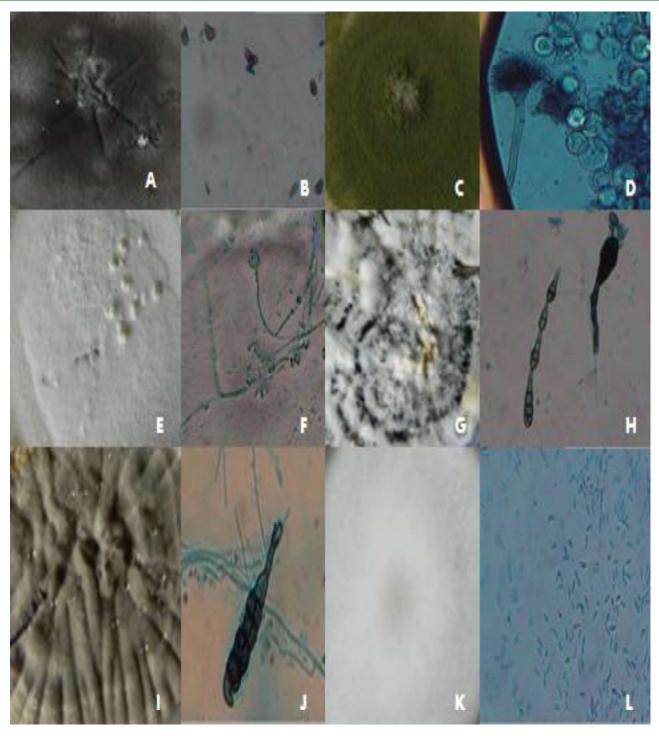



Figure 6: A- Curvularia sp, B- Conidia of curvularia; C- Aspergillus flavus, D- Conidiophores Aspergillus bearing conidia; E- Trichoderma spp, F- Conidiophores of Trichoderma bearing conidia; G- Alternaria sp, H- Conidial arrangement of Alternaria; I- Helminthosporium sp,J- Conidia of Helminthosporium; K- Fusarium oxysporum, L- Microconidia of Fusarium oxysporum



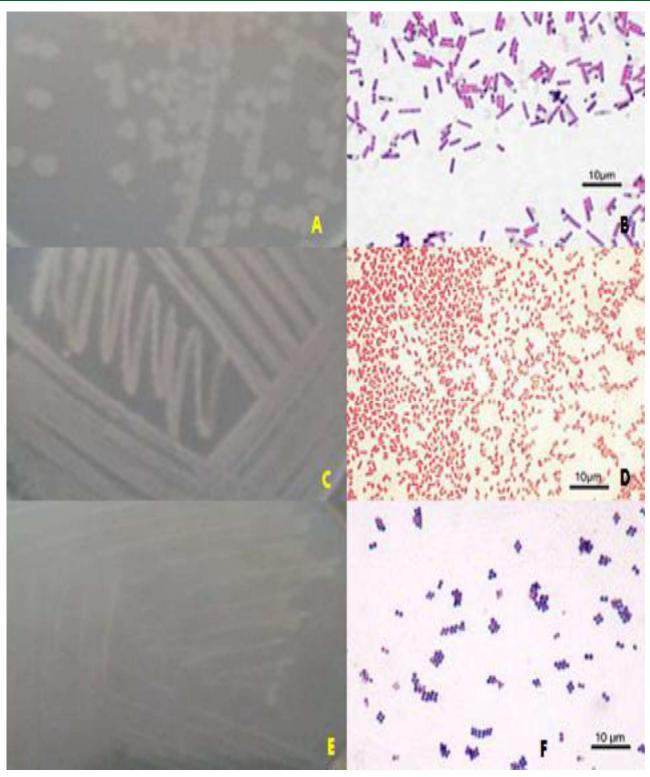



Figure 7 : A- Bacillus subtilis, B- Bacillus subtilis-Gram staining; C-Pseudomonas aureginosa, D-Pseudomonas aureginosa-Gram staining; E- Staphylococcus aureus, F-Staphylococcus aureus-Gram staining.