

Diatom Nanotechnology

Progress and Emerging Applications

Edited by Dusan Losic

CHAPTER 3

Nanoengineering of Diatom Surfaces for Emerging **Applications**

VANDANA VINAYAK*a, KHASHTI BALLABH JOSHIb, RICHARD GORDON^{c,d} AND BENOIT SCHOEFS^e

^aSchool of Applied Sciences, Diatom Nanoengineering and Metabolism (DNM), Dr. Harisingh Gour Central University Sagar (MP), 470003, India; ^bSchool of Chemical Science and Technology, Department of Chemistry, Dr. Harisingh Gour Central University Sagar (MP), 470003, India; ^cGulf Specimen Aquarium & Marine Laboratory, Panacea, FL, USA; ^dC. S. Mott Center for Human Growth & Development, Department of Obstetrics & Gynecology, Wayne State University, USA; eMetabolism, Engineering of Microalgal Molecules and Applications (MIMMA), UBL, IUML - FR 3473 CNRS, Le Mans University, France

*E-mail: kapilvinayak@gmail.com, kbjoshi77@gmail.com, dickgordoncan@gmail.com, Benoit.Schoefs@univ-lemans.fr

3.1 Introduction

Diatoms form a large group of unicellular microalgae that contribute up to 25% of the primary production on Earth. The three-dimensional exterior shells (frustules) of diatoms are made ous nanoengineered products or templates at microscale dimensions. The silica shells (frust les)

Nanoscience & Nanotechnology Series No. 44 Diatom Nanotechnology: Progress and Emerging A Edited by Dusan Losic

© The Royal Society of Chemistry 2018

Published by the Royal Society of Chemistry, w

Assistant Professor Department of Chemistry

Dr. Hari Singh Gour Central

University, Sagar (M.P.) 470003